
Pergamon 0039-9140(94)002Qo-2 

Talanra, Vol. 41, No. 12. PP. 2015-2023, 1994 
Copyright Q 1994 Ekvier Science Ltd 

Pruned in Great Britain. All rights reserved 
0099.9140/94 $26.00 + 0.00 

REVIEW 

A SINGLE AND SIMPLE MATHEMATICAL EXPRESSION OF 
THE SIGNAL FOR CW-LASER THERMAL 

LENS SPECTROMETRY 

J. GEORGES 

Laboratoire des Sciences Analytiques, CNRS UA 435, Bat. 308, Universitd Claude Bernard-Lyon 1, 
69622 Villeurbanne Cedex, France 

(Received 25 February 1994. Accepted 24 June 1994) 

Summary-Since the discovery of the thermal lens effect, several theoretical models have been put forward 
for cw-laser thermal lens spectrometry and different expressions of the thermal lens signal have been 
derived for various optical configurations including single-beam or dual-beam situations. This review 
focuses primarily on the successive mathematical expressions reported so far for both steady-state and 
time-resolved measurements, with the aim of comparing them in order to propose a single and convenient 
relation that accurately accounts for the sensitivity and the temporal behaviour of the thermal lens effect. 

Thermal lens spectrometry is part of a class of 
highly sensitive absorbance methods based on 
the measurement of the temperature rise follow- 
ing the conversion of absorbed optical radiation 
into heat through non-radiative relaxation 
processes. These methods are generally 
classified into two categories: photoacoustic 
spectroscopy which refers to the generation of 
acoustic waves’-’ and photothermal spec- 
troscopy which detects a change in the refractive 
index of the solvent.” While photoacoustic 
spectroscopy is experiencing renewed interest 
owing to the greater optical power of lasers, 
photothermal methods are more recent and rely 
on the spatial coherence of laser radiation. 
These two classes of techniques are powerful 
tools complementary to other well known 
spectroscopic methods based on absorption and 
emission and are increasingly used by analysts 
for trace microchemical analysis4.6-9 and by 
photochemists and biochemists to obtain en- 
ergetic and kinetic information about transient 
species.‘-” 

In photothermal spectroscopy, the refractive 
index change generates an optical element 
within the sample, thus changing the propa- 
gation properties of a probe beam. Depending 
on the optical configuration and on the resulting 
optical element formed, several photothermal 
methods have been derived. The optical element 

is represented by a spherical lens in thermal lens 
spectrometry’2-‘5 and in colinear photothermal 
deflection,‘“” a grating in photothermal diffrac- 
tionzO and a cylindrical lens in photothermal 
refraction.2’*22 

Laser-induced thermal lensing, which was 
discovered by Gordon et al.,” occurs as the 
result of light absorption by a Gaussian laser 
beam. Local heating near the beam axis pro- 
duces a transverse temperature gradient which 
induces a refractive index gradient. The refrac- 
tive index profile is approximately parabolic and 
behaves, for most liquids, as a negative lens 
which makes the laser beam to diverge. The 
thermal lens effect results in a spreading of the 
beam and a decrease in its intensity at the beam 
center. By measuring the far-field change in 
beam propagation, one can measure small 
absorbances and/or obtain information about 
the thermo-optical properties of the medium 
and the photophysical properties of the solute. 
Generally, the analytical signal is recovered by 
measuring the intensity variation at the center of 
a probe beam through a pinhole aperture with 
a photodiode. Less commonly, the thermal lens 
effect may be measured by recording the entire 
beam profile24-26 with optical computation of 
spatial moments” or using Fourier analysis of 
the beam profile in the spatial frequency 
domain.28.29 Although the beam profile method 
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is more accurate and less sensitive to spatial 
noise, the classical beam center measurement is 
more commonly used. 

Since the first theoretical treatment of 
Gordon et al.,z3 various experimental configur- 
ations have been compared and several models 
have been derived for cw-laser thermal lens 
spectrometry, including single-beam and dual- 
beam configurations and steady-state as well as 
time-resolved measurements. The aim of this 
paper is to review and compare the successive 
models in order to correlate them and derive a 
single and simple mathematical expression of 
the thermal lens signal easily available for the 
users of the technique. 

BASIS OF THE THERMAL LENS EFFECT 

Consider a cw laser which operates in the 
TEMoo mode giving a Gaussian intensity distri- 
bution according to: 

Z(r) = sexp 
( > 

-5 , (1) 

where Z(r) and P are the input intensity at 
distance r from the axis and the total power of 
the laser beam, respectively, and o is the beam 
radius defined as the distance r at which the field 
amplitude is l/e the value on the axis. 

If such a beam irradiates an absorbing 
sample, with incident intensity Z,,(r), the heat 
generated per unit length and unit time between 
r and r + dr is given by:23,30-32 

Q(r)dr=yu2nr dr 

2crP 
=-exp 

Jnw 2 

where a = tC is the absorption coefficient of the 
medium (cm-‘), c is the decadic molar absorp- 
tivity (1 . cm-’ * mol-‘) and C is the concen- 
tration of the analyte (molll’). J, the Joule’s 
coefficient, is 4.184 J/Cal, if Q is expressed in 
cal . set-’ * cmm2 and P in J/set or W. 

Since the center (r = 0) of the laser beam is 
more intense than the edges, the heat generated 
results in the formation of a radial temperature 
distribution with maximum at r = 0: 

AT(r, t) = 
Jn~;w’{;(l +:1./t.) 

x exp( -l:$it.)df’, (3) 

where t, = 0~140 = w2pC,/4k is a characteristic 
time constant, p, D, C, and k are the density 
(g/cm’), the thermal diffusivity (cm2/sec), the 
specific heat (Cal. g-’ * K-‘) and the thermal 
conductivity (Cal. set-’ . cm-’ * K-l), respect- 
ively. If it is preferred to express energy in Joule, 
then J = 1 and C, and k are expressed in 
Jag-‘*K-’ and Jasec-‘*cm-‘*K-l, respect- 
ively. 

The variation of the refractive index with 
distance r and time is proportional to AT and is 
approximately given by:23 

n(r, t)=no+FTAT(r, t), (4) 

where no is the refractive index at the initial 
temperature, and dn/dT (K-l) is the refractive 
index gradient. For most liquids, an increase in 
T produces a decrease of the refractive index 
such that the actual optical path at the beam 
center is shorter than that in the edges. The 
resulting refractive index gradient creates a lens- 
like optical element which has an effect on the 
beam propagation beyond the sample cell. 

The theory described in this review is based 
on a two-dimensional temperature model and 
involves several assumptions: 

-the laser beam is Gaussian 
-the sample is considered as an infinite 

medium with respect to the size of the beam and 
the spot size remains constant over the length of 
the sample cell 

-the sample is homogeneous and is weakly 
absorbing so that the refractive index gradient 
dn/dT is constant and the beam profile is not 
changed within the sample 

-thermal conduction is the main mechanism 
of heat transfer and only radial heat flow is 
considered. 

Two cases will be considered depending on 
whether the experimental set-up involves a 
single-beam or a dual-beam arrangement. 
Although the dual-beam configuration is gener- 
ally used, the optical simplicity of the single- 
beam configuration is sometimes preferred, 
especially when using the thermal lens method 
for detection in liquid chromatography.33 

THE SINGLE-BEAM METHOD 

The parabolic mo&123-30.32 

The first model was based on a single laser 
beam which performs both functions of forming 
the lens in the sample and probing its presence. 
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The laser beam is treated as a line source, with 
the above assumptions, and the temperature 
gradient in the sample is given in terms of 
exponential integrals: 

AT@, t) = s 

x[Ei(-$)-M(-&x$)1. (5) 

(Now, J, taken as unity, is systematically omit- 
ted and the other variables are expressed in 
Joules as mentioned above.) 

This expression cannot be solved without 
approximation. For temperatures near the axis, 
the curves for AT VS. the distance r, according 
to equation (S), are parabolic and the gradient 
may be approximated by expanding the expo- 
nential integrals in a power series, to terms in 
r2.23 

AT(r,t)=-$hr(l+~)-~]. (6) 

The curves are in good agreement with this 
quadratic approximation in the vicinity of the 
beam axis, typically up to r = w. 

Using the last expression of AT in equation 
(4), one obtains: 

dn UP 
n(r, t) = no + dTyj-& 

x [In(l+$)- 12T;$i)]. (7) 

Since dn/dT is small, the r-independent term in 
the brackets contributes only a small part to the 
refractive index and can be dropped; the re- 
maining quadratic expression is then written as: 

where: 

n(r, t) x n,[l + S(r/o)2], (8) 

&-2d” aP 

dT 47ckn,[l + (t,/2t)]’ (9) 

If the optical pathlength, I, is short, the 
parabolic radial refractive-index gradient, over 
the length I, acts as an ideal thin lens with focal 
length given by: 

f(t) = -g- 
0 

f(t) = 7rko2 
alP(dn/dT) 

The thermal lens is a time-dependent optical 
element and requires a finite time to develop 

within the sample. When t 9 t,, a steady-state is 
reached meaning that the rate of heating equals 
the rate of heat loss out of the irradiation volume. 
The steady-state focal length can thus be ex- 
pressed as: 

Irka 

f(co) = 2.3AP(dn/dT)’ (12) 

where A is the decadic absorbance. In this ex- 
pression, it is assumed that all the absorbed 
energy (2.3A P) is converted to heat. Otherwise, a 
correction factor must be applied. 

Based on this model, Hu and WhinneryM de- 
rived an expression which describes the variations 
in spot size and beam center intensity in the far 
field with respect to the absorbance of the sample 
and thermo-optical properties of the medium. 

The experimental arrangement for single- 
beam thermal lens measurements is shown in 
Fig. 1. A converging lens focuses the laser beam 
to a minimum radius o,, or beam waist, taken as 
the origin of the optical system. The sample cell is 
placed at a distance 2, beyond this waist, and the 
expansion of the beam is measured at a distance 
Z, from the cell.‘3932 Using the ray transfer matrix 
method’3.‘4g32 yields the following expression for 
the far-field spot size at the steady-state: 

+:[(1-&) 

( z, z2 
2 

+ z’-f(co)+z2 
>I > 

zf , (13) 

where Z, = a&/,? is the confocal distance. The 
sample pathlength must be small with respect to 
the confocal distance allowing the beam radius to 
be constant within the cell. 

The effect of the thermal lens on the spot size 
maximizes in the far field when Z, 9 Z,; then the 
expression for the far-field spot size is simplified 
as: 

w:_wlz:[(&~+(l -&)‘iz:]. 

(14) 

Finally, the signal is measured as the relative 
change in beam center intensity (r = 0), sampled 
with a pinhole and expressed as 1, = 2P/rco:, 
before [t = 0, thenf(0) = cc] and after the for- 
mation of the thermal lens: 

A&c -= h(O> - L(cQ) = 4~) - w:(o) 
4 &c(a) 40) (15) 

AI 22, z:+z,z __= -- 
Z .f(N’W. 

(16) 
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Considering that the thermal lens effect is weak, 
the quadratic term is neglected, and equation 
( 16) becomes: 

AI 22, 
-= 
Z _f(co)' (17) 

Taking the expression for f( co) and recalling 
that the beam spot size into the sample, w,, is 
defined as: 

0:=0; 
z:+z: 

[ 1 zf ’ (18) 

the dependence of the thermal lens signal on 
sample position along the beam axis is given by: 

(19) 

The effect of the thermal lens on the beam size 
in the far field depends on the size and the radius 
of curvature of the wavefronts for the beam at 
the sample position. Theoretically, for a weak 
thermal lens, the beam expands the most when 
the thermal lens is located at one confocal 
distance beyond the waist, Z, = Z,, where 
o = ~~o_13,14.30 

Under these conditions, the expression for the 
thermal lens signal is reduced to: 

Az 8 -_= 
Z 

(20) 

where 6 is a dimensionless parameter which 
indicates the strength of the thermal lens effect 

focusing 
lens 

f\ Cdl 

and depends on the sample absorbance, the 
laser power and the thermo-optical properties of 
the medium: 

(21) 

The aberrant thermal lens moakP~3s 

The parabolic model has provided a good 
basis for understanding the behavior of the 
thermal lens, but has required a few corrections 
in order to achieve more accurate quantitative 
predictions. The refractive-index gradient is not 
parabolic out of the excitation beam and the 
thermal lens cannot be considered as an ideal 
thin lens. 

Using Fresnel diffraction theory, Sheldon 
et al.” derived a more accurate expression 
of the thermal lens signal. This model 
incorporates the aberrant nature of the thermal 
lens which originates from deviations in the 
temperature profile with respect to an ideal 
parabolic distribution. Instead of approximat- 
ing the exponential integrals with a power 
series as in the parabolic model, the expression 
for the temperature distribution is kept in 
integral form and the refractive index US. 
radius and time is obtained by using AT 
of equation (3) in (4). The effect of the 
refractive-index gradient on beam propagation 
beyond the sample is then determined by 
using the diffraction theory of aberrations. 
Evaluation of the diffraction integral leads to an 

0 Zl z1+21 
Fig. 1. Optical system for single-beam thermal lens measurements. The origin of the system is at the beam 
waist, wO. formed by a focusing lens. The sample cell is placed at a distance 2, beyond the waist, where 
the beam size is w, The thermal lens effect is detected at a distance 2, from the cell and is measured as 

a change in the beam intensity. 
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expression for the relative intensity change at 
the beam center in the far field and at the 
steady-state: 

+!= -1 +[I -8 tan-‘(&)I’ (22) 

instead of: 

AI -= 
Z (23) 

for the parabolic model, with y = 2, /Z,. The 
sample position dependence, term in brackets in 
equation (22), predicts that the thermal lens 
signal is maximum when 2, = fi&, i.e. when 
the cell is located at ,/? the confocal distance 
beyond the waist. In this instance, the term 

tan-’ becomes tan’(0.577) = 0.52, 

and the optimum thermal lens signal may be 
expressed as:35 

AI 
- = -1 +[l -0.528]-‘. 
Z (24) 

Using the series approximation, 

(1 +x)-l= 1 -x+x*+ *.*, 

and neglecting the term in 0*, one obtains the 
final expression: 

(25) 

This relation is quite similar to that obtained 
with the parabolic model, but both models 
disagree on the position of the sample cell for 
maximum signal and on the relative magnitude 
of the thermal lens signal. For a given value of 
13, the parabolic mode1 predicts an intensity 
change that is almost twice greater. 

THE DUAL-BEAM METHOD 

Both models previously described considered 
a single-laser configuration in which the thermal 
lens is generated and probed by the same beam. 
Later experimental developments involved a 
dual-beam configuration in which the thermal 
lens is created by a modulated cw-laser and 
probed by a second much weaker and very 
stable laser. 36 The pump-and-p robe method al- 
lows the use of synchronous detection (lock-in 
amplifier) to detect the modulation on the probe 
beam center intensity by the thermal lens, which 
generally improves the signal-to-noise ratio over 
that obtained with the single-beam configur- 
ation. Moreover, the dual-beam configuration is 

necessary for recording absorption spectra, or 
when using pulsed-laser excitation. 

Two kinds of dual-beam experimental ar- 
rangements, called mode-matched and mode- 
mismatched dual-beam thermal lens, have been 
developed. 

The mode-matched configuration 

In this arrangement, both beams are focused 
by the same lens and are assumed to propogate 
coincidently with distance. The radii of the 
pump and probe laser beams are matched at the 
sample position. The single-beam theory applies 
equally well, but should include a small correc- 
tion for wavelength difference between the two 
beams:” 

AI 2.3A,P, -.--.= & 

I ( > I,k dT p’ (26) 

where P, is the power of the excitation laser, A, 
is the absorbance of the sample at the excitation 
wavelength, I, is the wavelength of the probe 
laser and (dn/dT), is the change in refractive 
index with temperature at the wavelength of the 
probe beam. If one defines a value of 8 with 
respect to the wavelength of both beams, and 
taking into account the aberrant nature of the 
thermal lens, one may write: 

(27) 

However, in this arrangement, maximum signal 
results from a compromise: the effect of the 
thermal lens on the propogation of the probe 
beam is maximum around the confocal point of 
the probe laser while, at this position, the 
strength of the thermal lens is lower than that at 
the waist of the excitation beam. 

The mode -mismatched conjiguration 

Enhanced sensitivity is expected when the 
sample is positioned at the waist of the 
excitation laser and near the confocal position 
of the probe beam.‘2”8 Such an arrangement is 
achieved by focusing the pump and probe 
beams by two separate lenses placed ahead of a 
beam splitter used to recombine the two 
beams.*’ Since the size of the excitation beam, 

at one confocal distance beyond its waist is 
:I:& ( 20,~ equation 18), the strength of the 
lens formed at the waist is twice stronger than 
that created at one confocal distance 
(equation 12). 

However, additional considerations include 
the relative size of the two beams, as studied first 
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Fig. 2. Scheme of the optical system for mode-mismatched dual-(learn thermal lens experiment. The cell 
is positioned at the waist of the excitation beam, o, = w,, and at a distance 2, from the waist of the 

probe beam, a+ which is taken as the origin of the optical system along the beam axis. 

by Berthoud et a1.39, assuming an ideal 
parabolic refractive index gradient, and then by 
Snook et a1.,40 taking the aberrant nature of the 
thermal lens into account. 

The paranoiac lens model. Berthoud et al. 
described the first theoretical model for mode- 
mismatched dual-beam thermal lens spec- 
trometry which accounts for the relative beam 
size in the sample cell. Since the sample cell is 
positioned at the waist of the excitation beam 
and near the confocal point of the probe beam, 
the probe beam into the sample is generally 
much larger than the excitation beam, and only 
the central part of the probe beam is affected by 
the thermal lens (Fig. 2). Therefore, the intensity 
change of the probe beam at the detector is 
expressed on the basis of Gaussian beam diffrac- 
tiou theory: the probe beam at the detector 
contains two components, one component 
modified by the thermal lens and the other one 
independent of the thermal effect. 

Keeping the same expression as in equation 
(15) for the steady-state thermal lens signal, and 
assuming that the variation of the beam size at 
the detector, Aw2, is smali with respect to w,, 
AZ/Z is expressed by the same relation corrected 
by the beam size ratio:3g 

where o, and wW are the beam sizes into the 
sample cell of the excitation and probe beams, 
respectively, and o: (0) and of< m) are the probe 
beam size at the detector before the formation 

of the thermal lens and at the steady-state, 
respectively. 

Following the same calculation as for 
equation (17), one obtains: 

Y (28) 

where W, = oeo is the waist of the excitation 
beam. 

Using equations (12) and (21), - l/f( co) may 
be expressed as 03LP/7to&, and using equation 
(18) to express wpc with respect to its waist c+,, 
equation (28) becomes: 

AZ 284, 22, Zf -_= 
Z ----5- z:+z; ’ [ 1 (29) no@ 

where A, is the wavelength of the probe laser, 
and Z, = EC&/& is the confocal distance of the 
probe laser. The position-dependent term in 
brackets in equation (29) maximizes for 
2, = Z,, leading to: 

1_&(j 
Z 2 * (30) 

wpc 

Since for Z, = Z,, wp; = J20po, equation (30) 
becomes finally: 

A! = 29 
I * 

(31) 

Although this expression was derived from the 
parabolic model, maximum sensitivity was 
ex~rimentally obtained when the cell was 
positioned at the waist of the excitation beam 
and at Z , = ,/?Z,, as suggested by Fang and 
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Swo&xd’* and then demonstrated in the aber- 
rant model of Sheldon.” Therefore, the sensi- 
tivity expected from equation (31) is somewhat 
over-estimated. Assuming that the same correc- 
tion as for a single-beam a~an~rn~~t can be 
applied to take the aberrant nature of the lens 
into account, one obtains: AI/Z % 8. 

The aberrant lens model. More recently, 
Snook et al.* introduced a new theoretical 
model for cw-laser thermal lens s~tromet~ 
which is suitable for single-beam and dual-beam 
experiments. As in the Sheldon’s model, the 
expression for the temperature gradient is kept 
as integral forms and the refractive index 
gradient into the sample is analysed as its effect 
on a phase shift of the probe beam. The probe 
beam is then treated with Fresnef diffraction 
theory using the complex amplitude of the 
electric field and considering only the central 
part of the probe beam at the detector plane. In 
this model, the steady-state thermal lens signal 
is best defined by: 

A\I ~((co) - r(O) -=: 
f 60) 

and finally expressed as: 

(32) 

y=[l-ztanwi( 1 +ET V2)J-- 1, (33) 

where V FZ Z, /Z,, and rn = (wp /CD,)‘, where alps 
and CU= are the size, into the sample cell, of the 
probe and excitation beams, respectively. The 
beam size ratio, m, represents the degree of 
mode-mismatching of the probe beam and exci- 
tation beam. As seen from equatian (33), the 
larger tan-‘f2mV/(l + 2m + V’)] is, the bigger 
is the signal, which means that the sensitivity of 
the thermal lens method increases when the 
degree of mode-~srna~~ng increases. 

The signal expression defined in equation (33) 
is general and applies equally well for all optical 
configurations. In single-beam experiments as 
well as in the mode-matched dua&eam 
configuration, m = 1 and the term tan-’ 
[2m V/( 1 + 2m I- I’“)] is the same as in the Shel- 
don’s model and maximizes at 0.52 for V = ,/?, 
that is Z, = fiZC; in this instance, equation 
(33) becomes: 

y = fl - 0.2rjep - 1. (34) 

Since 8 is small (for example: in water, with 
A =4x IO-3 and P = 100 mW, 8 = 0.2), 
equation (34) simplifies to the same relation as 

that derived by Sheldon: 

In the Moe-mismatched dual-beam configur- 
ation, the optimum eel1 position (value of Z, ) is 
not precisely defined by equation (33). However, 
taking Zl = $Z., Le. V = &, the plot of the 
steady-state signal AI,@ us, m fits to equation 
(33) and shows that maxims sensitivity is 
obtained when m is in the order of 30-40, i.e. 
when the size of the probe beam in the cell is 
about six to seven times greater than the size of 
the excitation beam.@ Then, tan-‘[2mV/ 
1 i- 2m + Vq maximizes at 1.0 and the ampli- 
tude of the thermal lens signal, equation (33), is 
given by the following simplified relation: 

ii!=; 1-B* 
I [ 1 2 

- l, 

that is, for small values of 8: 

(36) 

Alsil -6 -= I 
f 

phe minus in equations (35) and (37) comes 
from the fact that, in equation (32), the 
fractional intensity change is negative.] 

In conclusion, the difherent models lead to 
similar results. When using a dual-beam mode- 
mismatched configuration, the steady-state 
thermal lens signal, with optimum adjusting of 
the sample position and beam size ratio, is well 
described by the following relation: 

AI 
-= 
I (38) 

In the other cases, single-beam or mode- 
matched dual-beam configurations~ the signal is 
almost twice smaller. 

TIME-RESOLVED MEASUREMENTS 

The build-up of the thermal lens signal under 
cw-laser excitation depends on the characteristic 
time constant tC = ~z~~~/4~.41 The time-depen- 
dence of the signal is obtained by using a shutter 
to block or unblock the laser beam. The exper- 
iment begins when the shutter opens and is 
completed when the thermal lens is fully devel- 
oped and the signal has reached a steady-state. 
When the characteristic time constant te is small, 
a chopper can be used, at a low frequency in 
order to let the thermal lens to relax completely 
between two chopper cycles. From the time- 
dependence of the signal, experimental values 
of f can be obtained leading to quantitative 
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information about the thermo-optical proper- 
ties of the medium, such as thermal diffusivity, 
heat capacity or thermal conductivity. 

As in the experiment of Gupta et al.,42 carried 
out with pulsed-laser excitation, the method 
needs to use a reference solvent with known 
the~o-optical properties. However, the first 
experiments made on the basis of the parabolic 
model were not accurate43 and steady-state 
measurements were most often used. 

Two models taking the aberrant nature of the 
lens into account have been derived so far. In 
the first model developed for single-beam exper- 
iments, the predicted time-de~nden~ of the 
thermal lens signal when the cell is located at 
2, = Jsz, is written as? 

Z(t) = Z(O) 
[ 

0.577 
1 - 0 tan-’ (1 + t,,r) 1 . (39) 

More recently, a general equation that describes 
accurately the behaviour of the thermal lens 
signal has been developed by Snook et al.? 

I(t)=Z(O) 
[ 

0 
1 ---tan-’ 

( 2mIJ >I 
2 

x [(I+2m)~fY~](tc/2t)S1+2m+ vz * 

(40) 

Ex~rimental data have been shown to fit to 
equation (40) for a wide range of the degree of 
mode-mismatching, m.40 When m = 1, that is 
for single-beam or mode-matched dual-beam 
experiments, and taking V = u/3; equation (40) 
becomes: 

Z@)=Z(O)[l -~t~~-i~~)~ (41) 

which approximates to equation (39) of 
Sheldon. 

The time-dependence of the thermal lens sig- 
nal defined by equation (39)-(41) is compared 
in Fig. 3. For single-beam and mode-matched 
dual-beam configurations, both models agree 
quite well as shown by the fit of equations (39) 
and (40). For the mode-mismatched dual-beam 
method, the amplitude of the time-dependence 
is greater as expected from the steady-state 
signal expression. However, the time required to 
reach the steady-state is longer and increases 
when m increases. While the steady-state is 
reached for t c 2Ot, in single-beam and mode- 
matched dual-beam experiments, maximum 
sensitivity is obtained for longer times when 
using a high degree of mode-mismatching, 

typically t > lOOt, when m = 50. This can be a 
drawback in experiments where it is required 
to work with a modulated excitation beam at 
a frequency high enough, i.e. 20-40 Hz, in 
order to improve the signal-to-noise ratio 
and the peak resolution for the detection of 
flowing samples, such as in flow injection 
analysis or in liquid chromatography. In this 
instance, it is no longer advantageous to work 
with a high degree of Moe-mismat~~ng 
because the steady-state is not reached during 
a chopper cycle and maximum sensitivity can- 
not be achieved. The best compromise seems to 
be obtained with a low degree of mode- 
mismatching (m s 4, that is a probe beam twice 
greater than the excitation beam), allowing both 
a fast thermal lens equilibrium and a better 
sensitivity. 

The accuracy of theoretical equations with 
experimental rest&P indicates the possibility 
for the absolute meas~ement of weak ab- 
sorbances or of the thermo-optical properties of 
a sample without the use of any standard, 
provided that all the optical and geometrical 
parameters of the experimental set-up are 
known. Time-r~olved ex~~ments have been 
applied for the determination of k and Cr, from 
the experimental values of 0 and t,, in the study 
of electrolyte and surfactant effects on the 
the~o-optical properties of water.44 The 
method is also very useful when reference stan- 
dards are not available, such as in the measure- 
ment of thermal diffusivities of skin45 or of 
soda-lime glass.& 

1 8=0.2 I 

t, = to ms 

Fig. 3. Time-dependence of the thermal lens signal shown 
as the relative intensity vs. r/r,, based on the aberrant 
thermal lens model, for different optical configurations of 
the experimental set-up: (a) single-beam, equation (39). (0). 
and rn~~rnatch~ dual-beam, equation (41), (m) configur- 
ations; mode-mismatched dual-beam configuration, 
equation (40), with (b) M = 4, (c) m = 10 and (d) m = 50. 
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